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Abstract. We point out the existence of an alternative algebraic structure in Yang-Baxter algebra with
trigonometric R-matrix, which appears to be the generalization of the Yangian in Yang-Baxter algebras
with rational R-matrix and which is described most naturally by q-commutators. Some properties are
presented, in particular in the case of the well-known symmetric six-vertex model.

PACS. 02.20.+b Group theory – 05.50.+q Lattice theory and statistics; Ising problems

1 Introduction

Integrable systems in two-dimensional statistical mechan-
ics have statistical weights that satisfy algebraic relations
known nowadays as Yang-Baxter equations. These are
the necessary conditions which allow to set up a suitable
parametrization of the weights leading to the exact eval-
uation of the partition function of the model in the ther-
modynamic limit. The Yang-Baxter equations were then
recast in an algebraic structure called the quantum in-
verse scattering method by Faddeev et al. in the 70’s [1].
The advantage of this approach is the enormous simplifi-
cation gained in constructing the Bethe-ansatz eigenstates
of the row-to-row transfer matrix of the model. However
in the middle of the 80’s it has been realized that the
quantum inverse scattering method does lead to new in-
teresting structures which have helped in understanding
various interrelationships among models and their symme-
tries. Among other topics, the concept of quantum groups
which was introduced independently by Jimbo [2] and
Drinfeld [3] is in fact already contained in the Yang-Baxter
algebra of the quantum inverse scattering method and has
helped to understand the degeneracy of the transfer ma-
trix eigenstates, through representation theory of quan-
tum groups [4].

It is remarkable that integrable systems are always
linked to algebras of very large dimension: Onsager al-
gebra and Dolan-Grady algebra for the Ising model [5],
Virasoros algebras for critical models [6], Temperley-Lieb
algebras for vertex-models [7] etc. The dimension of these
algebras is in fact infinite if one takes the thermodynamic
limit. The common feature of all of these models is a very
large abelian symmetry generated by all the conserved
quantities which are usually obtained from the row-to-row
transfer matrix.
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Drinfeld has studied in particular the quantization of
classical integrable systems (by quantizing the so-called
Poisson lie group structures). He realized that the class
of solutions found as Yang-Baxter algebras with rational
R-matrix leads to a special algebraic structure which he
named Yangian [8]. In fact, one may say roughly that the
knowledge of the Yangian of a model is equivalent to the
knowledge of the Yang-Baxter algebra of the model. A
common example of system admitting rational R-matrix
is the critical 6-vertex model or equivalently the XXX
Heisenberg chain. The R-matrix is a very simple 4 × 4
matrix with three non-zero matrix elements satisfying a
linear relation. The symmetry group is naturally the sl(2)
group. Drinfeld has obtained all the algebraic properties
of the Yangian and studied some of the representations
of Yangians, each representation can be associated to a
physical model. Nowadays many Yangians are known for
integrable systems such as the Hubbard model, the Bose
gas in one dimension etc. [9].

The question is now whether a generalization of the
concept of Yangian is possible when one has a Yang-
Baxter algebra with trigonometric R-matrix. Drinfeld has
also raised this issue and has constructed a new alge-
bra A which he suspected to be linked to Yang-Baxter
algebras with trigonometric R-matrix [8]. For about ten
years, it has been realized that quantum groups are sym-
metry groups for the XXZ Hamiltonian with appropri-
ately modified boundary conditions [10]. In fact quantum
groups are associated with modified Yang-Baxter algebras
with reflection matrices, although a quantum group struc-
ture can also be extracted from the Yang-Baxter algebra
without modified boundary conditions [1,11].

It is the purpose of this note to explore this prob-
lem. We shall start with a concrete Yang-Baxter alge-
bra and reformulate its commutation rules in terms of
q-commutators which are introduced in the deformation
theory of quantum mechanics [12] and group theory to
give a more appropriate structure for our purpose. This is
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done in the next section. In Section 3, we shall study the
realization of the Yang-Baxter algebra by vertex systems
in statistical mechanics starting first with the one-site case
which leads to a direct connection with a quantum group.
The case of multisite Yang-Baxter algebra is treated next
where analyticity with respect to the “spectral parame-
ter” is fully used. The Yangian limit is examined in Sec-
tion 4. The relation to the dynamics represented by the
row-to-row transfer matrix is studied in Section 5. Finally
Section 6 is devoted to representations of the new algebra
A with a cyclic vector and in particular in the case of the
six-vertex model.

2 Yang-Baxter algebras

We shall consider the set of operators T (u) parametrized
by a spectral parameter u fulfilling the relations:

R
(u
v

)
T (u)⊗ T (v) = T (v)⊗ T (u)R

(u
v

)
, (1)

where R
(u
v

)
is a 6-vertex type of R-matrix of the form:

R
(u
v

)
=

(u
v
q −

v

u
q−1
)

0 0 0

0 (q − q−1)
(u
v
−
v

u

)
0

0
(u
v
−
v

u

)
(q − q−1) 0

0 0 0
(u
v
q −

v

u
q−1
)


(2)

and T (u) is an operator valued 2× 2 matrix:

T (u) =

(
A(u) C(u)
B(u) D(u)

)
. (3)

Expanding out the operator equation (1), one obtains 16
relations which are well-known in the formalism of quan-
tum inverse scattering method. However through linear
combinations one can rewrite these relations as relations
between q-commutators for the matrix elements of the
monodromy matrix T (u) namely:

[A(u), A(v)]=[B(u), B(v)]=[C(u), C(v)]=[D(u), A(v)]=0.
(4)

Moreover if we define the q-commutator of two operators
M and N as:

[M,N ]q = (MN − qNM). (5a)

Note that:

[M,N ]q=1 = [M,N ] and [M,N ]q=−1 = {M,N}.
(5b)

Then we have 8 relations for q-commutators:

[A(u), B(v)]q =
( v
u

)
[A(v), B(u)]q ,

[B(v), A(u)]q =
(u
v

)
[B(u), A(v)]q ,

[A(u), C(v)]q =
(u
v

)
[A(v), C(u)]q ,

[C(v), A(u)]q =
( v
u

)
[C(u), A(v)]q ,

[D(u), B(v)]q =
(u
v

)
[D(v), B(u)]q,

[B(v), D(u)]q =
( v
u

)
[B(u), D(v)]q,

[D(u), C(v)]q =
( v
u

)
[D(v), C(u)]q ,

[C(v), D(u)]q =
(u
v

)
[C(u), D(v)]q . (6)

Among diagonal and antidiagonal elements of T (u) we
have:

[A(u), D(v)] = [A(v), D(u)],

[B(u), C(v)] = [B(v), C(u)]. (7)

Also there are two additional relations:

(q − q−1)({A(u), D(v)} − {A(v), D(u)}) =

2
(v
u
−
u

v

)
([B(u), C(v)]),

(q − q−1)({B(u), C(v)} − {B(v), C(u)}) =

2
(v
u
−
u

v

)
([A(u), D(v)]). (8)

This formulation of the Yang-Baxter algebra in terms of
q-commutators seems natural if one seeks to reveal the
hidden quantum group structure.

3 Realizations by lattice vertex systems

3.1 The one site Yang-Baxter algebra

This is the case of one vertex operator whereby one takes,
following [13]:

T (u) =(
A(u) = (uqH − u−1q−H) C(u) = (q − q−1)J−

B(u) = (q − q−1)J+ D(u) = (uq−H − u−1qH)

)
,

(9)

where the operators H, J+, J− are the generators. The
set of previous commutators (4, 6, 7, 8) reduces then to
the three simple ones:

[qH , J+]q = (qHJ+ − qJ+qH) = 0

[q−H , J−]q = (q−HJ− − qJ−q−H) = 0

[J+, J−] =
q2H − q−2H

q − q−1
· (10)
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(q − q−1)({A2M+1(q),D−2M−1(q)} − {A−2M−1(q),D2M+1(q)}) = −2[B2M (q), C−2M(q)]

(q − q−1)({A−2M−1(q),D2M+1(q)} − {A2M+1(q),D−2M−1(q)}) = +2[B−2M (q), C2M(q)]. (14b)

These are precisely those of the Uq(sl(2)) quantum group.
As in [13], we notice that for one site A(u) and D(u) are
linear in u and u−1 whereas B(u) and C(u) are just con-
stant operators. When q → 1 we recover the sl(2) algebra.

3.2 Multisite Yang-Baxter algebra

When N vertices are disposed on the line we can generate
a monodromy matrix T (u), the elements of which have
the following u-expansion:

T (u) =

(
A(u) C(u)

B(u) D(u)

)
= (11)

M∑
m=−M−1

u2m+1A2m+1(q)
M∑

m=−M

u2mC2m(q)

M∑
m=−M

u2mB2m(q)
M∑

m=−M−1

u2m+1D2M+1(q)

 .

This form of T (u) can be most easily recognized by cal-
culating explicitly T (u) for M = 1, 2 using the one vertex
representation given by equation (9).

Here we have assumed for clarity N = 2M + 1, so that
the total number of operators is 2(2N + 1); they obey the
following set of relations among commutators:

[A2m+1(q), A2n+1(q)] = [B2m(q), B2n(q)] =

[C2m(q), C2n(q)] = [D2m+1(q), D2n+1(q)] = 0,

and q-commutators:

[A2m+1(q), B2n(q)]q = [A2n+1(q), B2m+2(q)]q,

[B2n(q), A2m+1(q)]q = [B2m(q), A2n+1(q)]q,

[A2m+1(q), C2n(q)]q = [A2n+1(q), C2m(q)]q ,

[C2n(q), A2m+1(q)]q = [C2m+2(q), A2n−1(q)]q ,

[D2m+1(q), B2n(q)]q = [D2n+1(q), B2m(q)]q ,

[B2n(q), D2m+1(q)]q = [B2m+2(q), D2n−1(q)]q ,

[D2m+1(q), C2n(q)]q = [D2n−1(q), C2m+2(q)]q,

[C2n(q), D2m+1(q)]q = [C2m(q), D2n+1(q)]q. (12)

The last 4 commutators containing the pairs (A(u), D(v))
and (B(u), C(v)) are equivalent to:

[A2m+1(q), D2n+1(q)] = [A2n+1(q), D2m+1(q)],

[B2m(q), C2n(q)] = [B2n(q), C2m(q)]. (13a)

(q − q−1)({A2m+1(q), D2n+1(q)}−{A2n+1(q), D2m+1(q)})

= 2[B2m+2(q), C2n(q)]− 2[B2m(q), C2n+2(q)],

(q − q−1)({B2m(q), C2n(q)} − {B2n(q), C2m(q)})

= 2[A2m+1(q), D2n−1(q)]− 2[A2m−1(q), D2n+1(q)].
(13b)

These relations take particular forms whenever the indices
reach the ends of their ranges since some of the operators
are equal to 0:

A2M+3(q) = A−2M−3(q) = B2M+2(q) = B−2M−2(q) = 0,
C2M+2(q) = C−2M−2(q) = D2M+3(q) = D−2M−3(q) = 0,

as well as for higher indices. It results that one has for
n = −M , ..., M :

[A2M+1(q), B2n(q)]q = [B2n(q), A−2M−1(q)]q = 0,

[C2n(q), A2M+1(q)]q = [A−2M−1(q), C2n(q)]q = 0,

[D−2M−1(q), B2n(q)]q = [B2n(q), D2M+1(q)]q = 0,

[C2n(q), D−2M−1(q)]q = [D2M+1(q), C2n(q)]q = 0.
(14a)

It remains to examine the limiting cases of equations (8).
Inspection shows that

See equations (14b) above.

Now by construction we have:

A±(2M+1)(q) = (−1)(2M+1)q±J
z

,

A±(2M+1)(q)D±(2M+1)(q) = I

and Jz =
2M+1∑
j=1

Hj .

We may relabel the other relevant operators as:

B±2M (q) = (q − q−1)J+(q±)

and C±2M (q) = (q − q−1)J−(q±).

Equations (14b) together with (14a) for n = −M , M yield
the commutation relations of the quantum group (sl(2)):

[J+(q±), J−(q±)] =
q2Jz − q−2Jz )

(q − q−1)
,

qJ
z

J+(q±) = qJ+(q±)qJ
z

,

J−(q±)qJ
z

= qqJ
z

J−(q±).

Thus this algebra A is a larger structure which contains
the quantum group as a subset, its commutation rules
extend naturally those of the quantum group as fixed by
the Yang-Baxter algebra.

4 The Yangian limit of the algebra A

As suggested by Sklyanin [18], one may say that the R-
matrix of equation (2) is the structure contants tensor of
the algebra A. If R depends upon a parameter ε, then
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the limit ε→ 0 defines a new R-matrix R(0) hence a new
algebra which may thought as contraction of the original
algebra. Hereafter we show that the limit of A as q → 1 is
the Yangian algebra Y(sl(2)) of Drinfeld under the form
studied by Kirillov and Reshetikhin [14].

Setting q = exp ελ, u = exp εθ and v = exp εθ′ we find
that

1

2ε
R
(u
v

)
−−−→
ε→0

R(θ − θ′) =(θ − θ′ + λ) 0 0 0
0 λ (θ − θ′) 0
0 (θ − θ′) λ 0
0 0 0 (θ − θ′ + λ)

 . (15)

This R-matrix is called a rational R-matrix; it defines a
new algebra for the monodromy matrix T (θ):

T (θ) =

(
A(θ) C(θ)
B(θ) D(θ)

)
. (16)

The set of Yang-Baxter equations reads now

R(θ − θ′)T (θ)⊗ T (θ′) = T (θ)R(θ − θ′),

and is equivalent to the limiting form of equations (4, 6,
7, 8).

Since the commutator and anticommutator structures
remain insensitive to the limit of ε → 0, equations (4,7)
do not change form and the variables (u, v) are replaced
by (θ, θ′):

[A(θ), A(θ′)] = [B(θ), B(θ′)] =

[C(θ), C(θ′)] = [D(θ), D(θ′)] = 0, (4′)

[A(θ), D(θ′)] = [A(θ′), D(θ)]

[B(θ), C(θ′)] = [B(θ′), C(θ)]. (7′)

The limiting form of equation (8) is obtained by taking
terms of order ε:

λ({A(θ), D(θ′)} − {A(θ′), D(θ)})

= 2(θ′ − θ)([B(θ), C(θ′)]),

λ({B(θ), C(θ′)} − {B(θ′), C(θ)})

= 2(θ − θ′)([A(θ), D(θ′)]). (8′)

Now observing that

lim
ε→0

[M,N ]q = [M,N ],

lim
ε→0

1

ε
([M,N ]q − [M,N ]) = λNM,

we see that equations (6) collapse to 4 equations:

[A(θ), B(θ′)] = [A(θ′), B(θ)],

[A(θ), C(θ′)] = [A(θ′), C(θ)],

[D(θ), B(θ′)] = [D(θ′), B(θ)],

[D(θ), C(θ′)] = [D(θ′), C(θ)]. (6′)

But as in equation (8) we must keep also terms of order
ε, they yield 8 equations:

λ(B(θ)A(θ′)−B(θ′)A(θ)) = (θ′ − θ)[A(θ), B(θ)],

λ(A(θ′)B(θ)−A(θ)B(θ′)) = (θ − θ′)[B(θ), A(θ′)],

λ(C(θ)A(θ′)− C(θ′)A(θ)) = (θ − θ′)[A(θ′), C(θ)],

λ(A(θ′)C(θ)− A(θ)C(θ′)) = (θ′ − θ)[C(θ), A(θ′)],

λ(B(θ)D(θ′)−B(θ′)D(θ)) = (θ − θ′)[D(θ′), B(θ)],

λ(D(θ′)B(θ) −D(θ)B(θ′)) = (θ′ − θ)[B(θ), D(θ′)],

λ(C(θ)D(θ′)− C(θ′)D(θ)) = (θ′ − θ)[D(θ′), C(θ)],

λ(D(θ′)C(θ) −D(θ)C(θ′)) = (θ − θ′)[C(θ), D(θ′)]. (6′′)

Equations (6′′) are formed by 4 pairs, an equation of
any pair may be obtained from the other equation of the
same pair through relabelling and use of the corresponding
equation in (6′).

At this stage we recognize the definition of the Yan-
gian Y(sl(2)) algebra as formulated in reference [14] (see
Eq. (2.1) therein); their (u, v) variables are related to our
(θ, θ′) by u = (θ − θ′) and v = θ′, with λ = 1.

4.1 The one-site algebra solution

It is obtained as limit, for ε → 0, of the Wiegmann-
Zabrodin construction (see Eq. (9)):

lim
ε→0

1

2ε
T (u) =

(
A(θ) = (θ + λH) C(θ) = λJ−

B(θ) = λJ+ D = (θ − λH)

)
, (9′)

then the set of relations (4′, 6′, 6′′, 7′, 8′) reduces to the
commutation relations for the sl(2) algebra:

[H,J+] = J+ [H,J−] = −J− [J+, J−] = 2H. (10′)

This is the expected result from the limit q → 1 of equa-
tions (10).

4.2 The multisite algebra Y(sl(2))

A multisite construction may be given from the one site
construction by considering the N(= 2M+1) fold coprod-
uct of one site monodromy matrices. In equation (11) the
u parameter is replaced by the θ parameter as expansion
parameter for the elements of the multisite monodromy
matrix. We observe however that θ appears now with odd
and even powers in the expansions:

T (θ) =


A(θ) =

N∑
m=0

θmAm(λ) C(θ) =
N−1∑
m=0

θmCm(λ)

B(θ) =
N−1∑
m=0

θmBm(λ) D(θ) =
N∑
m=0

θmDm(λ)

 .

(11′)

In particular we note that here the operators AN (λ) =
DN(λ) = I are just trivial. The form given by Kirillov and
Reshetikhin corresponds in fact to the scaled monodromy
matrix θ−−NT (θ) [14].
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Equations (4′, 6′, 6′′, 7′, 8′) yield consequently the
commutators for the generators Am(λ), Bm′(λ), Cn(λ),
Dn′(λ) of the algebra Y(sl(2)), which shall be written for
simplicity as Am, Bm′ , Cn, Dn′ in the remaining part of
this section:

[Am, An] = [B′m, Bn] = [Cm, Cn] = [Dm, Dn] = 0, (4′′)

λ(BmAn −BnAm) = [Am, Bn−1]− [Am−1, Bn],

λ(AmBn −AnBm) = [Bm−1, Am]− [Bn, Am−1],

λ(CnAm − CmAn) = [An−1, Cm]− [An, Cm−1],

λ(AnCm −AmCn) = [Cm, An−1]− [Cm−1, An],

λ(BnDm −BmDn) = [Dm, Bn−1]− [Dm−1, Bn],

λ(DnBm −DmBn) = [Bn−1, Dm]− [Bn, Dm−1],

λ(CnDm − CmDn) = [Dm−1, Cn]− [Dm, Cn−1],

λ(DnCm −DmCn) = [Cm−1, Dn]− [Cm, Dn−1]. (6′′′)

[Am, Dn] = [An, Dm], [Bm, Cn] = [Bn, Cm]. (7′′)

λ({Bn, Cm} − {Bm, Cn}) = 2[An, Dm−1]− 2[An−1, Dm],

λ({An, Dm} − {Am, Dn}) = 2[Bn, Cm−1]− 2[Bn−1, Cm].
(8′′)

Keeping in mind that AN = DN = I,BN = CN = 0 by
construction, we observe that the previous commutators
(6′′′, 8′′) for end values of indices m, n yield the commu-
tators of the sl(2) algebra for the operators:

(AN−1 −DN−1, BN−1, CN−1),

namely:

[AN−1 −DN−1, BN−1] = 2λBN−1,

[AN−1 −DN−1, CN−1] = −2λCN−1,

[BN−1, DN−1] = λ(AN−1 −DN−1).

This is, up to some rescaling, the expected result from the
q → 1 limit of A.

5 Relation to the dynamics

Let us define the following linear combinations of A(u)
and D(u):

τq(u) = qA(u) + q−1D(u)

τq−1(u) = q−1A(u) + qD(u)

τ−1(u) = A(u)−D(u)

τq(u) = A(u) +D(u). (17)

The last operator τ(u) is just the row-to-row transfer ma-
trix of the N = 2M + 1 sites vertex model. It defines the
“dynamics” or Euclidean time evolution perpendicular to
the row of vertices. The first equation (7) shows that τ(u)
form a commuting family with respect to the parameter u.

Here we would like to show that A2M+1(D−2M−1),
A−2M−1(D2M+1), B2M , C−2M generators of Uq(sl(2)) do

not all commute with τ(u). Indeed starting from the rela-
tions (6) we may obtain:(y

v
−
v

u

)
τ(u)C(v) = C(v)

(u
v
τq(u)−

v

u
τq−1(u)

)
− (q − q−1)C(u)τ−1(v) (18)

and using the previous commutators (12–15) we are led to
the relations:

uτ(u)C2m(q)− u−1τ(u)C2m−2(q) =

C2m(q)uτq(u)− C2m−2u
−1τq−1(u)

− (q − q−1)C(u)τ−1,2m−1 (19)

especially for m = M + 1 we get:

τ(u)C2M (q) =

(C2M (q)τq−1(u) + (q − q−1)uC(u)τ−1,2M+1). (20)

This shows that C2M (q) does not commute with the trans-
fer matrix τ(u) except when q → 1, i.e. in the case of the
rational R-matrix.

However one can show using the same approach that:

A2M+1(q)D(u)−D(u)A2M+1(q) = 0

A2M+1(q)A(u) −A(u)A2M+1(q) = 0.

A similar result holds for D2M+1(q) indicating that there
is a very reduced symmetry for the dynamics .

Finally it is known that the Uq(sl((2)) is only a symme-
try group when appropriate boundary conditions are met
and this is the case with reflexion matrices introduced by
Sklyanin [11].

6 Spin 1/2 cyclic representation

In this section we examine some features related to the
spin 1/2 representation of this algebra A which corre-
spond to the symmetric 6-vertex model. As it is known
in the theory of quantum inverse scattering for integrable
systems there exists a cyclic representation generated from
a bare vacuum vector |Ω〉 made up of the tensor product
of up-spins on each lattice site:

|Ω〉 = | ↑1↑2 · · · ↑N 〉.

The representation is defined by the following choice of
generators of sl(2):

J− = σ−, J+ = σ+,H =

(
1

2

)
σz (22)

in terms of Pauli matrices. It is known that in the usual
quantum inverse scattering method the state of one down-
spin is created by the C(u) operator applied to the vacuum
generating a one-particle wave function:

C(u)[Ω〉

=
N∑
j=1

(u
√
q − u−1

√
q−1)j−1(q − q−1)

× (u
√
q−1 − u−1√q)N−j | ↑1↑2 · · · ↓j · · · ↑N 〉. (23)
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Thus the one down-spin has a wavefunction:

ψj(u, q) = (q − q−1)

(
u
√
q −

1

u
√
q

)j−1 (
u
√
q
−

√
q

u

)N−j
(24)

which is essentially a plane wave at space position j.
Now in the new alternative formulation the C2m(q)

operators when applied to the vacuum |Ω〉 will generate a
one down-spin state with a polynomial wave function in q:

C2(M−p)(q)|Ω〉 =
N∑
j=1

Tj(p, q)| ↑1↑2 · · · ↓j · · · ↑N〉 (25)

with wavefunction at site j:

Tj(p, q)

= (−1)pq−(M+1)+j(q − q−1)
∑
r+s=p

(
j−1
r

) (
N−j
s

)
qz−r.

(26)

Recall that N = 2M + 1. These polynomials have obvi-
ously a generating function:

(q − q−1)
(
u
√
q −

1

u
√
q

)j−1( u
√
q
−

√
q

u

)N−j
=

M∑
p=M−1

u2(M−p)Tj(p, q). (27)

Basically the C2m(q) will play the same role as before:
flipping down up-spins whereas the B2m(q) flip them up.
The total number of down-spins remain conserved by the
A2m+1(q), D2m+1(q) operators.

However the situation is a bit more complicated in the
sector of two down-spins in quantum inverse scattering the
application of two C(u) operators generates automatically
a Bethe-ansatz wavefunction for two down-spins:

C(u′)C(u)|Ω〉 =
∑
l≤j

{ (q u
′

u
− q−1 u

u′
)

(u
′

u
− u

u′
)

ψl(u
′, q)ψj(u, q)

+
(u
′

u − q
−1 u′

u )

( u
u′
− u′

u
)
ψl(u, q)ψj(u

′, q)
}
| ↑1 · · · ↓l · · · ↓j · · · ↑N〉.

(28)

Now in the other formalism we have:

C2(M−p)(q)C2(M−p′)(q)|Ω〉

=
∑

l≤l≤j≤N

(
Tj−1(p, q)Tl−1(p′, q) + Tj(p

′, q)Tl(p, q)

+Tl≤j(p, p
′, q))| ↑1 · · · ↓l · · · ↓j · · · ↑N〉 (29)

where the two down-spins have in addition of symmetrized
product of single down-spin wavefunctions also a true pair

wavefunction:

Tl≤j(p, p
′, q))

= [(−1)pq−(M+1)+l(q − q−1)][(−1)p
′

q−(M+1)+j(q − q−1)]

×
∑

s+t=p,s′+t=p′

qt−sqt
′−s′

×
∑

n=l+1,··· ,j−1

(
n−1
s

) (
N−n
t

) (l+j−n−2
s′

)(
N−l−j−1+n

t′

)
.

(30)

It is remarkable that the one down-spin has a polynomial
wave function as in the case of the generator of the corner
transfer matrix [15], moreover the structure of equation
(29) is reminiscent of that of the two down-spins in corner
transfer matrix found by Davies about a decade ago [16].

7 Conclusion

In this short note we have shown that a new alge-
braic structure A exists for Yang-Baxter algebras with
trigonometric R-matrix. This structure contains the usual
Uq(sl(2)) and generalizes the concept of Yangian found
in Yang-Baxter algebras with rational R-matrix. We note
that this new algebra is not a symmetry algebra of the
related row-to-row transfer matrix, however exhibits in-
teresting features which seem to be related to those of
corner transfer matrices. Several relevant questions may
be raised at this point:

- Does an elliptic version of A exist?
- Can it help in constructing eigenstates of the row-to-

row transfer matrix?
- What is the relation to the Corner Transfer Matrix

[17]?

We hope to be able to tackle them in the near future.

The author is indebted to the referee for suggestions leading
to improvements of the text.
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